04.02.2024

Гомоморфизмы групп и нормальные делители. Нормальный делитель группы


Задача 1. Проверить выполнение аксиом группы для а) множества целых чисел; б) множества четных целых чисел; в) множества нечетных целых чисел относительно операции сложения.

Решение. Обозначим черезZ 2 n – множество четных целых чисел, а черезZ 2 n -1 – множество нечетных целых чисел. Замкнутыми относительно сложения являются множествоZи множествоZ 2 n . В самом деле, складывая два целых числа, получаем целое число; складывая два четных целых числа, получаем также четное целое число. Напротив, при сложении двух нечетных чисел не получается нечетное число, что указывает на то, что множествоZ 2 n -1 незамкнуто относительно операции сложения.

Проверим выполнение других аксиом группы. Сложение является ассоциативной операцией. Нейтральным элементом на множествах ZиZ 2 n относительно сложения является 0. Далее, для любого целого числа (четного целого числа) противоположное ему число также является целым (четным целым).

Таким образом, можно сделать вывод, что и
группы, а
не удовлетворяет определению группы, равно как и определениям моноида и полугруппы.

При этом обе группы
и
являются коммутативными (абелевыми), в силу коммутативности сложения.

Задача 2. Доказать, что множество четных целых чисел образует подгруппу аддитивной группы целых чисел.

Решение. Ранее доказано, что
группа. При этом
. Тем самым, доказано, что
подгруппа группы
.

Задача 3. Найти смежные классы группы
по подгруппе
.

Решение . Для удобства записи обозначим
. Левые смежные классы группы
по подгруппе
представлены ниже:

Очевидно, что левые смежные классы совпадают с соответствующими правыми классами. Это является следствием коммутативности сложения. Следовательно, группа четных целых чисел является нормальным делителем аддитивной группы целых чисел.

Рассмотренный пример, кроме прочего, иллюстрирует ряд основных фактов, касающихся смежных классов:

а) одним из смежных классов является сама подгруппа Н (в данном случае это смежный класс Н + 0);

б) любые два смежных класса либо совпадают (например, Н + 0 и Н + 2), либо вовсе не пересекаются (например, Н + 0 и Н + 1);

в) множество смежных классов (например, левых) образует разбиение носителя группы; в данном случае
.

        Задачи для самостоятельного решения


Теорема Лагранжа утверждает, что если , a
, то

т.е. порядок
любой подгруппы H группы G делит N – порядок группы G.

Естественно, возникает вопрос об обращении теореме: если m является делителем
, то существует ли в группе G подгруппа H порядка m?

Другими словами: существует ли для каждого делителя m порядка группы N подгруппы H группы G порядка m?

В общем случае ответ отрицательный, однако в некоторых частных случаях такое обращение теоремы Лагранжа справедливо.

Теорема. (обращение теоремы Лагранжа )

1. Всякая подгруппа циклической группы есть снова циклическая группа.

2. Подгруппы бесконечной циклической группы

.

3. Подгруппы циклической группы порядка числа.

Доказательство.

Докажем 1 . Пусть – произвольная циклическая группа порядка
. Для определенности будем предполагать, что– аддитивная группа.

В этом случае общий элемент группы имеет вид

Пусть
– произвольная неединичная подгруппа группы, т.е.
.

Так как
, то элементами подгруппы
являются элементы вида
, но если.

Среди всех элементов вида
, выберем элемент

, где
– наименьшее положительное число.

Тогда любое
можно представить в виде:

Из того, что

но m – наименьшее число, удовлетворяющее условию

mgH  r = 0  H =,

т.е. Н – циклическая группа с образующим элементом mg.

Докажем 2 . Подгруппы бесконечной циклической группы
исчерпываются бесконечными группами
.

Действительно, так как
– циклическая группа с образующим элементом 1 или
, т.е.

то, в соответствии с пунктом 1 данной теоремы, любая подгруппа H циклической группы
определяется натуральным числом
и имеет вид

причем все эти подгруппы бесконечны.

Докажем 3 . Подгруппы циклической группы порядка находятся во взаимно однозначном соответствии с положительными делителямичисла.

Пусть, как и ранее,
– аддитивная циклическая группа порядка, т.е.

Если , причем, если элемент

Нам надо доказать, что
делит.

Действительно, представим

Тогда из того, что



,

а минимальность
влечет
, следовательно
.

Таким образом, из того, что
, следует, что подгруппа
имеет порядок, т.е.

.

Когда
пробегает по всем положительным делителям числа, то же самое делает и, и мы получаем ровно по одной подгруппе порядка, делящего.

Следствие. В циклической группе
порядкаподгруппа
порядка
совпадает с множеством элементов
, таких, что
.

Доказательство. Элементы циклической группе
порядкаимеют вид

Если
, тои
.

Обратно, пусть
и
.

Из условия
следует, что
, откуда
и.

1. Нормальные делители

Пусть G – произвольная группа, а H – подгруппа группы G, тогда, если то мы получаем два левых смежных класса
и
.

Мы хотим выяснить условия, при которых произведение элементов, взятых из смежных классов
и
, не зависит от выбора представителей классов и всегда принадлежит одному и тому же смежному классу, что и произведение элементов
, а именно классу
.

Элемент принадлежит смежному классу
, а элемент– смежному классу
.

Произвольные элементы, принадлежащие, соответственно, смежным классам
и
можно представить в виде:

Тогда их произведение

должно принадлежать классу

.

Это означает, что в подгруппе H,

Умножая почленно полученное равенство слева на , имеем:

(9)

где

Соотношение (9) позволяет сделать следующий вывод.

Так как элементы
выбраны произвольно, то для любого элемента
и любого элемента
существует элемент

,

удовлетворяющий соотношению (9).

Кроме того, элемент
а элемент
. В силу этого каждый левый смежный класс группы G по H содержится в некотором правом смежном классе группы G по той же подгруппе H:

Аналогично можно показать и обратное включение

а это будет означать, что

Определение 1. Подгруппа H группы G называется нормальным делителем или инвариантной подгруппой , если для любых двух смежных классов g 1 H и g 2 H по подгруппе H, произведение
произвольных элементов
из этих классов, принадлежит одному и тому же смежному классу
(рис. 2).

Рис. 2 – Подгруппа H – нормальный делитель группы G.

Формально: подгруппа H – нормальный делитель группы , если:

В коммутативных группах всякая подгруппа является нормальным делителем (в силу коммутативности операции сложения).

Для практического использования понятия нормального делителя рассмотрим еще несколько более «конструктивных в обращении» определений.

Определение 2. Подгруппа H группы G является нормальным делителем группы G в том и только том случае, если каждый левый смежный класс
совпадает с правым смежным классом
группы G по H и наоборот.

Формально: подгруппа H – нормальный делитель группы G, если:

Условие (12), очевидно, означает, что:

Примеры.

1. В любой группе G сама группа
и единичная подгруппа
являются ее нормальными делителями: левый и правый смежные классы группы G по подгруппе
состоит из одного смежного класса
, а левый (правый) смежные классы по единичной подгруппе H состоят из всех элементов группы G.

2. В каждой абелевой группе G каждая ее подгруппа H является нормальным делителем.

3. Мультипликативная группа положительных вещественных чисел
является нормальным делителем мультипликативной группы всех отличных от нуля вещественных чисел,

4. Мультипликативная группа отличных от нуля рациональных чисел
является нормальным делителем мультипликативной группы отличных от нуля вещественных чисел

5. В мультипликативной группе
невырожденных матриц
-го порядка с вещественными коэффициентами подгруппа
матриц с определителем равным единице:

является нормальным делителем этой группы.

Действительно, единичная матрица
, если

и

– соответственно, левый и правый смежные классы группы
-невырожденных матриц
-го порядка с вещественными коэффициентами по подгруппе
- матриц с определителем равным единице.

,

Т.е.
.

С другой стороны, если

,

поскольку
поэтому

Следовательно, сгруппировав в один смежный класс (левый или правый) все матрицы с равными детерминантами, получим разложение группы
по подгруппе
. Этот пример показывает, что и в некоммутативных группах могут быть подгруппы – нормальные делители, для которых левый смежный класс

совпадает с правым смежным классом

Подгруппа H группы G называется нормальным делителем, если для каждого элемента g группы G его левый и правый смежные классы по подгруппе H равны, т.е. gH =Hg .

Теорема 2.5. Подгруппа H группы G является нормальным делителем тогда и только тогда, когда содержится в H при любых g из G и h из H .

Доказательство очевидно.

Пусть H – нормальный делитель группы G . На множестве смежных классов введем операцию умножения, индуцируемую групповой операцией. Под произведением смежных классов aH и bH будем понимать множество всевозможных произведений элементов из aH на элементы bH . Поскольку H – нормальный делитель, то все эти произведения содержатся в смежном классе (ab )H . Таким образом, на множестве смежных классов введена операция. Эта операция ассоциативна (aHbH )cH =aH (bHcH ), существует нейтральный элемент H , и для каждого элемента aH существует обратный a -1 H . Следовательно, множество смежных классов, относительно введенной операции, образуют группу, которая называется факторгруппой.

Гомоморфизм групп.

Однозначное отображение группы G в группу H , сохраняющее операцию, называется гомоморфизмом группы G в H .

Изоморфизм является частным случаем гомоморфизма.

Свойство 2.9. При гомоморфизме нейтральный элемент группы G отображается в нейтральный элемент группы H .

Доказательство вытекает из равенства .

Множество элементов группы G , отображающихся в нейтральный элемент, называют ядром гомоморфизма и обозначают .

Свойство 2.10.

Доказательство . Так как , то .

Свойство 2.11. Ядро гомоморфизма является нормальным делителем группы G .

Доказательство . Для a из G и b из ядра справедливо , то есть .

Множество элементов группы H , являющиеся образами элементов G , называют множеством образов и обозначают .

Свойство 2.12. Множество образов является подгруппой H .

Доказательство очевидно.

Теорема 2.6. Факторгруппа изоморфна .

Доказательство . Соответствие является взаимно однозначным и сохраняет операцию, следовательно, оно определяет изоморфизм и .

Теорема 2.7. Для любого нормального делителя H группы G существует гомоморфизм, ядро которого равно H . В частности таким гомоморфизмом из G в G/H является .

Доказательство очевидно.

Нормальный ряд

Докажем две теоремы о гомоморфизмах.

Теорема 2.8. Пусть H нормальный делитель группы G и P – подгруппа G . Тогда - нормальный делитель P и

Доказательство . Пусть и . Тогда так как H нормальный делитель G , и т.к все элементы из P . Следовательно, - нормальный делитель P . Соответствие является взаимно однозначным и сохраняет операцию. Теорема доказана.

Теорема 2.9. Пусть P – нормальный делитель и . Тогда T – нормальный делитель G и .

Доказательство . Рассмотрим , где , . Поскольку , то , и, значит T – нормальный делитель G . Соответствие является взаимно однозначным, т.к. и сохраняет операцию.

Группа называется простой, если в ней нет нормального делителя отличного от нее самой и единичной подгруппы.

Нормальный ряд группы – последовательность подгрупп, в которой каждая следующая является нормальным делителем предыдущей. Если все группы нормального ряда содержатся в нормальном ряде , то говорят, что второй нормальный ряд получен уплотнением первого нормального ряда.

Нормальный ряд без повторений, который нельзя уплотнить называется композиционным.

Для нормального ряда определены факторы . Два нормальных ряда называются изоморфными, если все факторы первого ряда изоморфны факторам второго ряда переставленным в определенном порядке.

Свойство 2.13. Если нормальные ряды и изоморфны, то для каждого уплотнения первого ряда можно найти изоморфное ему уплотнение второго ряда.

Доказательство. Допустим, что между подгруппами и появились новые подгруппы . Поскольку и, значит, факторы изоморфны соответствующим подгруппам . Обозначим через соответствующую подгруппу . Определим последовательность групп , где i =1,…,t . По доказанной выше теореме . Таким образом, уплотнение второго ряда группами является изоморфным. свойство доказано.

Пусть заданы группы g 1 = (G 1 , ⋅, 1) и g 2 = (G 2 , ⋅, 1) Отображение f: G 1 → G 2 называют гомоморфизмом группы g 1 в группу g 2 (гомоморфизмом групп), если для любых x, у ∈ G 1 выполняется равенство f(x ⋅ у) = f(x) ⋅ f(у), т.е. образ произведения любых двух элементов группы g 1 при отображении f равен произведению их образов в группе g 2 .

Если отображение f сюръективно (биективно), то его называют эпиморфизмом (изоморфизмом) групп. В этом случае говорят также об эпиморфизме (изоморфизме) группы g 1 на группу g 2 .

Замечание 2.5. Мы обозначили операции групп g 1 и g 2 одинаково, как это обычно и делается для однотипных алгебр, хотя, конечно, это разные операции разных групп.

Пример 2.21. Пусть g 1 = (ℤ, +, 0) - аддитивная группа целых чисел, а g 2 = ℤ +k - аддитивная группа вычетов по модулю k.

Зададим отображение f так: для всякого целого m образ f(m) равен остатку от деления m на k. Можно проверить, что для любых целых тип имеет место равенство f(m + n) = = f(m ⊕ k f(n), т.е. для целых чисел остаток от деления суммы на к равен сумме по модулю к остатков от деления на к каждого слагаемого.

Следовательно, данное отображение есть гомоморфизм группы g 1 в группу g 2 . Далее, поскольку любое целое число от 0 до k - 1 есть остаток от деления на k какого-то числа, то отображение f является и эпиморфизмом группы g 1 на группу g 1 .

Теорема 2.14. Пусть g 1 , g 2 - произвольные группы. Если f: g 1 → g 1 - гомоморфизм, то:

  1. образом единицы (нейтрального элемента) группы g 1 при отображении f является единица группы g 2 , т.е. f(1) = 1;
  2. для всякого элемента х группы g 1 образом элемента x -1 является элемент -1 , обратный элементу f(x), т.е. f(x -1) = -1 .

◀ Согласно определению гомоморфизма, для произвольного x ∈ g 1 имеем f(х) ⋅ f(1) = f(х ⋅ 1). Далее, f(х ⋅ 1) = f(х), т.е. f(x) ⋅ f(1) = f(x). Следовательно, f(1) = (f(х)) -1 ⋅ f(х) = 1, т.е. f(1) = 1

Докажем второе утверждение теоремы. Используя определение гомоморфизма и уже доказанное первое утверждение теоремы, получаем

f(x -1) ⋅ f(x) = f(x -1 ⋅x) = f(1) = 1, т.е. f(x -1) = -1

Множество f(G 1) - образ носителя группы g 1 при гомоморфизме f - замкнуто относительно умножения группы g 2 . Действительно, если g 2 , g 2 " ∈ f(g 1), то существуют такие g 1 , g 1 " ∈ g 1 что f (g 1) = g 2 и f (g 1 ") = g 2 ". Тогда

g 2 g 2 " = f(g 1)f(g 1 ") = f(g 1 g 1 ") ∈ f(g 1).

Из теоремы 2.14 следует, что f(g 1) содержит единицу этой группы и вместе с каждым элементом обратный к нему элемент. Это значит, что можно определить подгруппу группы g 2 носителем которой будет множество f(g 1). Эту группу называют гомоморфным образом группы g 1 при гомоморфизме f.

Группу K называют просто гомоморфным образом группы g , если существует гомоморфизм группы g на группу K . Так, группа ℤ *k при любом k > 1 является гомоморфным образом аддитивной группы целых чисел (см. пример 2.21).

Обратимся к следующему примеру.

Пример 2.22. Рассмотрим мультипликативную группу (С\ {0}, ⋅, 1) комплексных чисел с обычной операцией умноже- умножения комплексных чисел. Легко понять, что эта группа не что иное, как мультипликативная группа поля комплексных чисел.

Рассмотрим также группу М 2 невырожденных квадратных матриц второго порядка с операцией умножения матриц (см. пример 2.9.е).

Определим отображение f множества ℂ комплексных чисел в множество квадратных матриц второго порядка, положив для произвольного ненулевого комплексного числа а + bi, что

Покажем, что f - гомоморфизм групп. С одной стороны,

f[(a + bi)(с + di)] = f[(ac - bd) + i(ad + bc)] =

С другой стороны,

Следовательно,

f[(a + bi)(с + di)] = f(a + bi) f(с + di).

Таким образом, отображение f - гомоморфизм групп, а гомоморфный образ мультипликативной группы комплексных чисел при f - это подгруппа K группы матриц M 2 , состоящая из матриц вида Здесь мы учли, что любая матри ца вида является образом некоторого комплексного числа (а именно а + bi) при отображении f. Группа K - собственная подгруппа группы M 2 . #

Сформулируем без доказательства одно важное свойство гомоморфизмов групп.

Теорема 2.15. Если f - гомоморфизм группы g в группу K, a g - гомоморфизм группы K в группу L, то композиция отображений f॰g есть гомоморфизм группы g в группу L. #

Рассмотрим некоторые свойства изоморфизмов групп.

Теорема 2.16. Если f: g 1 → g 2 - изоморфизм группы g 1 на группу g 2 то отображение f -1 , обратное к отображению f, есть изоморфизм группы g 2 на группу g 1 .

◀Пусть х и у - произвольные элементы группы g 2 , пусть также х = f(u), а у = f(v), где u и v - элементы группы g 1 .

f -1 (xy) = f -1 (f(u)f(v)) = uv = f -1 (x) f -1 (y),

т.е. отображение f -1 - гомоморфизм второй группы в первую. Но так как отображение, обратное к биекции, есть биекция, то f -1 - изоморфизм группы g 2 на группу g 1 .

Группы g и K называют изоморфными , если существует изоморфизм одной из них на другую. При этом используют обозначение g ≅ K.

Изоморфные группы с точки зрения их алгебраических свойств совершенно одинаковы, хотя их элементы могут иметь различную природу. Вернемся в этой связи к примеру 2.22. Легко убедиться в том, что определенное там отображение а множества комплексных чисел на множество квадратных матриц специального вида является биекцией. Следователь- Следовательно, мультипликативная группа комплексных чисел и группа матриц указанного вида с операцией умножения матриц изо- изоморфны, хотя элементы этих групп на первый взгляд не имеют между собой ничего общего.

Определение 2.8. Ядром гомоморфизма f группы g в группу К называют прообраз Кег f единицы группы g при гомоморфизме f: Кегf = f -1 (1)⊆ G.

Пример 2.23 . Ядром гомоморфизма, рассмотренного в примере 2.21, служит множество всех целых чисел, делящихся на k.

Теорема 2.17 . Ядро Кегf гомоморфизма f: g → K есть подгруппа группы g .

◀Нужно убедиться в том, что множество Кег f замкнуто относительно умножения группы Q, содержит единицу этой группы и вместе с каждым элементом содержит обратный к нему элемент.

Если a, b ∈ Ker f, т.е. f(a) = f(b) = 1, то f(ab) = f(a)f(b) = = 1 и аb ∈ Кегf. Ясно, что 1 ∈ Kerf, так как f(1) = 1 (см. теорему 2.14). Если а ∈ Кегf, то f(а -1) = -1 = 1 -1 = 1, т.е. и a -1 ∈ Кегf.

Ядро гомоморфизма, приведенного в примере 2.21, представляет собой подгруппу аддитивной группы целых чисел, состоящую из всех чисел, кратных k.

Подгруппа Н группы g называется нормальной подгруппой (нормальным делителем) группы g , если аН = На для любого a ∈ G.

В коммутативной группе, как было отмечено выше, аН = = На. Следовательно, в этом случае любая подгруппа является нормальным делителем.

Пусть H = (H, ⋅, 1) - подгруппа группы g = (G, ⋅, 1). Для фиксированных элементов a, b ∈ G через аНb обозначим множество всех произведений вида ahb, где h ∈ Н. В силу ассоциативности групповой операции это обозначение корректно.

Теорема 2.18. Подгруппа H = (H, ⋅, 1) является нормальным делителем группы g = (G, ⋅, 1) тогда и только тогда, когда аНа -1 ⊆ Н для любого а ∈ G.

◀Если Н - нормальный делитель, то для любого а ∈ G аН = = На, т.е. для любого h ∈ H найдется такое h 1 ∈ H, что аh = = h 1 a. Пусть элемент х ∈ аНа -1 , т.е. x = aha -1 для некоторого h ∈ Н. Так как ah = h 1 а, то х = h 1 аa -1 = h 1 ∈ H и поэтому аHа -1 ⊆ H.

Обратно, если аНа -1 ⊆ H, то любой элемент х = aha -1 , где h ∈ Н, принадлежит и множеству H, т.е. aha -1 = h 1 для некоторого h 1 ∈ H. Отсюда, умножая последнее равенство на a справа, получим ah = h 1 a, т.е. элемент ah из левого смежного класса аН принадлежит и правому смежному классу На. Итак, аН ⊆ На.

Теперь возьмем для произвольного a ⊆ G обратный к а элемент а -1 и для него запишем включение а -1 На ⊆ H (напомним, что (а -1) -1 = а). Рассуждая как и выше, получим, что для некоторых h, h 1 ∈ H имеет место равенство a -1 h = h 1 a -1 , т.е. ha = ah 1 и На ⊆ аH. Итак, аН = Hа и H - нормальный делитель.

Оказывается, существует связь между понятием нормального делителя и понятием гомоморфизма, которая продолжает и углубляет на новом уровне уже известную нам из главы 1 связь между понятиями отображения и класса эквивалентности.

Теорема 2.19. Ядро гомоморфизма f группы g в группу K является нормальным делителем группы g .

Для любого у ∈ Кег f и любого a ∈ G имеем

f(aya -1) = f(a)f(y)f(a -1) = f(a)⋅0⋅f(a -1) = f(a)f(a -1) = 1

Это значит, что для любого а ∈ G выполняется соотношение а(Кег f)а -1 ⊆ Кег f, а, согласно теореме 2.18, Кегf - нормальный делитель.

Пусть H = (H, ⋅, 1) - нормальный делитель группы g = = (G, ⋅, 1). Рассмотрим множество всех левых смежных классов {аН: a ∈ G}. Это будет не что иное, как фактор-множество множества G по определенному выше (см. теорему 2.11) отношению эквивалентности ~ H .

Введем операцию умножения на множестве всех левых смежных классов следующим образом: произведением аН ⋅ bН классов аН и bН назовем класс аbН.

Это определение корректно, так как множество аН ⋅ bН, т.е. множество всех произведений вида ahbh 1 для различных h, h 1 ∈ H, в силу того что Hb = bH для всякого b ∈ G, совпадает с левым смежным классом аbH. Действительно, поскольку hb = = bH" для некоторого h" ∈ H, то ahbh 1 = abh"h 1 ∈ аbH.

Теперь рассмотрим некоторый х ∈ аbH, т.е. x = abh для некоторого x ∈ Н 1 . Поскольку bh = h"b для некоторого h" ∈ Н, то х = аx"b = ah"b1 ∈ aHbH. Следовательно, аH ⋅ bН = abH.

Можно далее легко показать, что для каждого a ∈ G имеют место аН ⋅ Н = Н ⋅ аН = аН и аН а -1 Н = а 1 Н ⋅ аН = Н. Тем самым определена группа, носителем которой является фактормножество G/~ H множества G по отношению эквивалентности ~ H с операцией умножения левых смежных классов, причем нейтральным элементом относительно этой операции служит носитель подгруппы H, а обратным к левому смежному классу аН будет левый смежный класс а -1 Н. Эту группу называют фактор-группой группы g по нормальному делителю H и обозначают g /H. Можно указать естественный гомоморфизм f группы g в фактор-группу g /H, который вводится согласно правилу: (Aх ∈ G)(f(x) = хН). Так как хН ⋅ уН = хуН, то для любых x,y ∈ G f(xy) = xyH = хН⋅ уН = f(x)f(y) и f - действительно гомоморфизм. Его называют каноническим гомоморфизмом группы g в фактор-группу g /H.

Пример 2.24. а. Рассмотрим аддитивную группу ℝ = = (ℝ, +, 0) действительных чисел. Эта группа коммутативна. Напомним, что в коммутативной группе любая подгруппа будет нормальным делителем. Поэтому для нее нормальным делителем является подгруппа целых чисел ℤ = (ℤ, +, 0) (аддитивная группа целых чисел). (Для этих групп мы приняли такие же обозначения, как и для их носителей: ℝ и ℤ соответственно.)

Выясним смысл отношения экивалентности ~ ℤ определяемого через равенство левых смежных классов*, по подгруппе ℤ в этом случае.

Равенство левых смежных классов а + ℤ = b + ℤ означает, что для любого целого m найдется такое целое n, что а + m = b + n, т.е. a-b = n-m ∈ ℤ. Обратно, если разность а - b есть целое число, т.е. a -b = n ∈ Z, то a + Z = (b + n) + ℤ = b + ℤ. Итак, a~ ℤ b тогда и только тогда, когда а - b ∈ ℤ, или, иначе говоря, действительные числа а и b ~ ℤ - эквивалентны тогда и только тогда, когда их дробные части равны.

*Мы можем говорить в данном случае просто о смежных классах, не различая левых и правых, так как для нормального делителя эти классы равны, тем более что мы „работаем" сейчас в коммутативной группе.

Аддитивная группа смежных классов, т.е. фактор-группа ℝ/ℤ группы ℝ по нормальному делителю ℤ строится так: сумма классов а + ℤ и b + ℤ равна классу (а + b) + ℤ. Вводя обозначение а + ℤ = [а], получаем [а] + [b] = [а + b]. При этом = ℤ (т.е. единица фактор-группы - это смежный класс нуля - множество всех целых чисел), причем -[а] = [-а] = (-а) + ℤ. Обратим внимание на то, что смежный класс числа х однозначно определяется его дробной частью (см. пример 1.14.6), т.е. [х] = . Канонический гомоморфизм в данном случае задается так: х ↣ [х].

б. Рассмотрим теперь аддитивную группу действительных чисел по модулю 1 , т.е. группу S 1 = (: а ∈ ℝ} смежных классов в полуинтервал ) = . Поскольку [х] = - биекция и, кроме того,

φ([х] + [y]) = φ([х+y]) = = + > = ⊕ 1 = φ ([х]) ⊕ 1 φ ([y]).

Это значит, что φ - изоморфизм ℝ/ℤ на S 1 .

Группу S 1 можно воспринимать как „наглядный образ" фактор-группы ℝ/ℤ. Довольно абстрактная идея фактор-группы кристаллизуется в виде группы с носителем }


© 2024
tm-zhukov.ru - Бизнес портал - Zhukov